TERCEIRA QUANTIZAÇÃO PELO SDCTIE GRACELI
TRANS-QUÂNTICA SDCTIE GRACELI, TRANSCENDENTE, RELATIVISTA SDCTIE GRACELI, E TRANS-INDETERMINADA.
FUNDAMENTA-SE EM QUE TODA FORMA DE REALIDADE SE ENCONTRA EM TRANSFORMAÇÕES, INTERAÇÕES, TRANSIÇÕES DE ESTADOS [ESTADOS DE GRACELI], ENERGIAS E FENÔMENOS DENTRO DE UM SISTEMA DE DEZ OU MAIS DIMENSÕES DE GRACELI, E CATEGORIAS DE GRACELI.
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS =
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.
x [EQUAÇÃO DE DIRAC].
+ FUNÇÃO TÉRMICA.
+ FUNÇÃO DE RADIOATIVIDADE
, + FUNÇÃO DE TUNELAMENTO QUÂNTICO.
+ ENTROPIA REVERSÍVEL
+ FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA
ENERGIA DE PLANCK
X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......ΤDCG
XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
x
sistema de dez dimensões de Graceli + DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..
- DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
xsistema de transições de estados, e estados de Graceli, ESTADOS DE GRACELI TÉRMICOS E ESTADOS DOS ELEMENTOS QUÍMICO, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].x
número atômico, estrutura eletrônica, níveis de energia - TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
- X
- CATEGORIAS DE GRACELI
- T l T l E l Fl dfG l
N l El tf l P l Ml tfefel Ta l Rl Ll * D
X [ESTADO QUÂNTICO].
As equações de Lippmann–Schwinger (em homenagem a Bernard Lippmann e Julian Schwinger[1]) é uma das equações mais utilizadas para descrever colisões de partículas – ou, mais precisamente, de espalhamento – na mecânica quântica. Pode ser usado para estudar o espalhamento das moléculas, átomos, nêutrons, fótons ou quaisquer outras partículas e é importante principalmente para o estudo de física óptica, atômica e molecular, física nuclear e física de partículas, mas também para os problemas de espalhamento em geofísica. Ela refere-se a função de onda espalhada com a interação que produz o espalhamento (potencial espalhador) e, por conseguinte, permite o cálculo dos parâmetros experimentais relevantes (amplitude de espalhamento e a sessão de choque).
A equação mais fundamental para descrever qualquer fenômeno quântico, incluindo o espalhamento, é a equação de Schrödinger. Em problemas físicos esta equação diferencial deve ser resolvida com a entrada de um conjunto adicional de condições iniciais e/ou condições de contorno para o sistema físico estudado. A equação de Lippmann-Schwinger é equivalente à equação Schrödinger mais as condições de contorno para problemas típicos de espalhamento. A fim de incorporar as condições de contorno, a equação Lippmann-Schwinger deve ser escrita como uma equação integral.[2] Para problemas de espalhamento, a equação de Lippmann-Schwinger muitas vezes é mais conveniente do que a equação de Schrödinger.
A equação de Lippmann-Schwinger é, de forma geral, (na verdade são duas equações mostrados abaixo, uma para e outra para ):
- X
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.
+ FUNÇÃO TÉRMICA.
+ FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..- DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.xsistema de transições de estados, e estados de Graceli, ESTADOS DE GRACELI TÉRMICOS E ESTADOS DOS ELEMENTOS QUÍMICO, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].x
- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
- X
- CATEGORIAS DE GRACELI
- T l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl * D
As equações de Lippmann–Schwinger (em homenagem a Bernard Lippmann e Julian Schwinger[1]) é uma das equações mais utilizadas para descrever colisões de partículas – ou, mais precisamente, de espalhamento – na mecânica quântica. Pode ser usado para estudar o espalhamento das moléculas, átomos, nêutrons, fótons ou quaisquer outras partículas e é importante principalmente para o estudo de física óptica, atômica e molecular, física nuclear e física de partículas, mas também para os problemas de espalhamento em geofísica. Ela refere-se a função de onda espalhada com a interação que produz o espalhamento (potencial espalhador) e, por conseguinte, permite o cálculo dos parâmetros experimentais relevantes (amplitude de espalhamento e a sessão de choque).
A equação mais fundamental para descrever qualquer fenômeno quântico, incluindo o espalhamento, é a equação de Schrödinger. Em problemas físicos esta equação diferencial deve ser resolvida com a entrada de um conjunto adicional de condições iniciais e/ou condições de contorno para o sistema físico estudado. A equação de Lippmann-Schwinger é equivalente à equação Schrödinger mais as condições de contorno para problemas típicos de espalhamento. A fim de incorporar as condições de contorno, a equação Lippmann-Schwinger deve ser escrita como uma equação integral.[2] Para problemas de espalhamento, a equação de Lippmann-Schwinger muitas vezes é mais conveniente do que a equação de Schrödinger.
A equação de Lippmann-Schwinger é, de forma geral, (na verdade são duas equações mostrados abaixo, uma para e outra para ):
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Nas equações acima, é a função de onda de todo o sistema (os dois sistemas considerados como um todo colidem) em um tempo infinito antes da interação; e , em um tempo infinito após a interação (a "função de onda espalhada"). O potencial de energia descreve a interação entre os dois sistemas em colisão. O Hamiltoniano descreve a situação em que os dois sistemas estão infinitamente distantes e não interagem. As suas autofunções são e seus autovalores são as energias . Finalmente, é uma questão técnica matemática utilizada para o cálculo das integrais necessárias para resolver a equação e não tem nenhum significado físico.
Nas equações acima, é a função de onda de todo o sistema (os dois sistemas considerados como um todo colidem) em um tempo infinito antes da interação; e , em um tempo infinito após a interação (a "função de onda espalhada"). O potencial de energia descreve a interação entre os dois sistemas em colisão. O Hamiltoniano descreve a situação em que os dois sistemas estão infinitamente distantes e não interagem. As suas autofunções são e seus autovalores são as energias . Finalmente, é uma questão técnica matemática utilizada para o cálculo das integrais necessárias para resolver a equação e não tem nenhum significado físico.
Uso
A equação de Lippmann-Schwinger é útil num grande número de situações que envolvem o espalhamento de dois corpos. Para três ou mais corpos colidindo ele não funciona bem por causa das limitações matemáticas; as equações de Faddeev podem ser utilizadas como uma alternativa.[3] No entanto, existem aproximações que podem reduzir um problema de muitos corpos a um conjunto de problemas de dois corpos numa variedade de casos. Por exemplo, em uma colisão entre elétrons e moléculas, pode haver dezenas ou centenas de partículas envolvidas. Mas o fenômeno pode ser reduzido a um problema de dois corpos, descrevendo todos os potenciais das partículas constituintes juntamente com um pseudopotencial.[4] Nestes casos, as equações Lippmann-Schwinger podem ser utilizadas. Naturalmente, as principais motivações destas abordagens são também a possibilidade de fazer os cálculos com os esforços computacionais otimizados.
A equação de Lippmann-Schwinger é útil num grande número de situações que envolvem o espalhamento de dois corpos. Para três ou mais corpos colidindo ele não funciona bem por causa das limitações matemáticas; as equações de Faddeev podem ser utilizadas como uma alternativa.[3] No entanto, existem aproximações que podem reduzir um problema de muitos corpos a um conjunto de problemas de dois corpos numa variedade de casos. Por exemplo, em uma colisão entre elétrons e moléculas, pode haver dezenas ou centenas de partículas envolvidas. Mas o fenômeno pode ser reduzido a um problema de dois corpos, descrevendo todos os potenciais das partículas constituintes juntamente com um pseudopotencial.[4] Nestes casos, as equações Lippmann-Schwinger podem ser utilizadas. Naturalmente, as principais motivações destas abordagens são também a possibilidade de fazer os cálculos com os esforços computacionais otimizados.
Derivação
Vamos supor que o Hamiltoniano pode ser escrito como
- X
Vamos supor que o Hamiltoniano pode ser escrito como
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
onde H e H0 possuem os mesmos autovalores e H0 é a Hamiltoniana de uma partícula livre. Por exemplo, na mecânica quântica não-relativística H0 pode ser
- .
- X
onde H e H0 possuem os mesmos autovalores e H0 é a Hamiltoniana de uma partícula livre. Por exemplo, na mecânica quântica não-relativística H0 pode ser
- .
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Intuitivamente V é a energia de interação do sistema. Esta analogia é um pouco enganadora, pois as interações tipicamente mudam a energia E dos estados estacionários, mas H e H0 possui um espectro idêntico Eα. Isto significa que, por exemplo, um Estado vinculado que é um autoestado da Hamiltoniana interagente também será um autoestado do Hamiltoniano livre. Isto está em contraste com o Hamiltoniano obtido desligando todas as interações, nesse caso, não haveria estados ligados. Assim, pode-se pensar em H0 como o Hamiltoniano livre para os estados ligados com parâmetros eficazes que são determinados pelas interações.
Seja um autoestado de H0:
- .
- X
Intuitivamente V é a energia de interação do sistema. Esta analogia é um pouco enganadora, pois as interações tipicamente mudam a energia E dos estados estacionários, mas H e H0 possui um espectro idêntico Eα. Isto significa que, por exemplo, um Estado vinculado que é um autoestado da Hamiltoniana interagente também será um autoestado do Hamiltoniano livre. Isto está em contraste com o Hamiltoniano obtido desligando todas as interações, nesse caso, não haveria estados ligados. Assim, pode-se pensar em H0 como o Hamiltoniano livre para os estados ligados com parâmetros eficazes que são determinados pelas interações.
Seja um autoestado de H0:
- .
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Agora, se adicionarmos a interação precisaremos resolver
- .
- X
Agora, se adicionarmos a interação precisaremos resolver
- .
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Por causa da continuidade dos autovalores de energia, queremos que quando .
Uma solução para essa equação pode ser
- .
- X
Por causa da continuidade dos autovalores de energia, queremos que quando .
Uma solução para essa equação pode ser
- .
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Por inserção de um conjunto completo de estados de partículas livres,
- ,
- X
Por inserção de um conjunto completo de estados de partículas livres,
- ,
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
a equação de Schrödinger é transformada em uma equação integral. Os estados "in" (+) e "out" (−) são assumidos para formar bases, no passado distante e num futuro distante tendo, respectivamente, a aparência de estados de partículas livres, mas sendo autofunções do Hamiltoniano completo. Assim, adotando-se índices, a equação pode ser escrita como:
- .
- X
a equação de Schrödinger é transformada em uma equação integral. Os estados "in" (+) e "out" (−) são assumidos para formar bases, no passado distante e num futuro distante tendo, respectivamente, a aparência de estados de partículas livres, mas sendo autofunções do Hamiltoniano completo. Assim, adotando-se índices, a equação pode ser escrita como:
- .
- X
Comentários
Postar um comentário